[1]
S.
Cherny
et al.,
“Simulating fully 3D
non-planar evolution of hydraulic fractures,” International
Journal of Fracture, vol. 201, no. 2, pp. 181–211, 2016, doi:
10.1007/s10704-016-0122-x.
[2]
P.
Karnakov, D. Kuranakov, V. Lapin, S. Cherny, and D. Esipov,
“Peculiarities of the hydraulic fracture propagation caused by
pumping of proppant-fluid slurry,” Thermophysics and
Aeromechanics, vol. 25, no. 4, pp. 587–603, 2018, doi:
10.1134/s086986431804011x.
[3]
S.
M. H. Hashemi
et al.,
“A versatile and membrane-less
electrochemical reactor for the electrolysis of water and brine,”
Energy & Environmental Science, vol. 12, no. 5, pp.
1592–1604, 2019, doi:
10.1039/c9ee00219g.
[4]
U.
Rasthofer, F. Wermelinger, P. Karnakov, J. Šukys, and P. Koumoutsakos,
“Computational study of the collapse of a cloud with 12 500 gas
bubbles in a liquid,” Physical Review Fluids, vol. 4,
no. 6, p. 063602, 2019, doi:
10.1103/PhysRevFluids.4.063602.
[5]
P.
Karnakov, F. Wermelinger, M. Chatzimanolakis, S. Litvinov, and P.
Koumoutsakos,
“A high performance computing framework for
multiphase, turbulent flows on structured grids,” in
Proceedings of the platform for advanced scientific computing
conference, in PASC ’19. Zurich, Switzerland, 2019. doi:
10.1145/3324989.3325727.
[6]
P.
Karnakov, F. Wermelinger, S. Litvinov, and P. Koumoutsakos,
“Aphros: High performance software for multiphase flows with large
scale bubble and drop clusters,” in
Proceedings of the
platform for advanced scientific computing conference, in PASC ’20.
Geneva, Switzerland, 2020. doi:
10.1145/3394277.3401856.
[7]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“A hybrid particle
volume-of-fluid method for curvature estimation in multiphase
flows,” International Journal of Multiphase Flow, vol.
125, p. 103209, 2020, doi:
10.1016/j.ijmultiphaseflow.2020.103209.
[8]
Z.
Y. Wan, P. Karnakov, P. Koumoutsakos, and T. P. Sapsis,
“Bubbles
in turbulent flows: Data-driven, kinematic models with history
terms,” International Journal of Multiphase Flow, vol.
129, p. 103286, 2020, doi:
10.1016/j.ijmultiphaseflow.2020.103286.
[9]
P.
Karnakov
et al.,
“Data-driven inference of the
reproduction number for COVID-19 before and after
interventions for 51 European countries,” Swiss
medical weekly, vol. 150, p. w20313, 2020, doi:
10.4414/smw.2020.20313.
[10]
P.
Karnakov, S. Litvinov, J. M. Favre, and P. Koumoutsakos,
“Breaking
waves: To foam or not to foam?” Physical Review Fluids,
vol. 5, no. 11, p. 110503, 2020, doi:
10.1103/PhysRevFluids.5.110503.
[11]
M.
Chatzimanolakis
et al.,
“Optimal allocation of limited
test resources for the quantification of COVID-19
infections,” Swiss Medical Weekly, vol. 150, p. w20445,
2020, doi:
10.4414/smw.2020.20445.
[12]
S.
M. Martin, D. Wälchli, G. Arampatzis, A. E. Economides, P. Karnakov, and
P. Koumoutsakos,
“Korali: Efficient and scalable software
framework for Bayesian uncertainty quantification and
stochastic optimization,” Computer Methods in Applied
Mechanics and Engineering, vol. 389, p. 114264, 2022, doi:
10.1016/j.cma.2021.114264.
[13]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“Computing foaming
flows across scales: From breaking waves to microfluidics,”
Science Advances, vol. 8, no. 5, p. eabm0590, 2022, doi:
10.1126/sciadv.abm0590.
[14]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“Flow reconstruction
by multiresolution optimization of a discrete loss with automatic
differentiation,” The European Physical Journal E, vol.
46, no. 7, p. 59, 2023, doi:
10.1140/epje/s10189-023-00313-7.
[15]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“Solving inverse problems in physics by optimizing a
discrete loss: Fast and accurate learning without neural
networks,” PNAS Nexus, p. pgae005, Jan. 2024,
doi:
10.1093/pnasnexus/pgae005.
[16]
M.
Balcerak
et al.,
“Physics-regularized multi-modal image
assimilation for brain tumor localization,” in
Advances in
neural information processing systems, A. Globerson, L. Mackey, D.
Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, Eds., Curran
Associates, Inc., 2024, pp. 41909–41933. Available:
https://proceedings.neurips.cc/paper_files/paper/2024/file/49fb58cfd482a33619d48a5c5910cf3c-Paper-Conference.pdf
[17]
M.
Balcerak
et al.,
“Individualizing glioma radiotherapy
planning by optimization of a data and physics-informed discrete
loss,” Nature Communications, vol. 16, no. 1, p. 5982,
2025, doi:
10.1038/s41467-025-60366-4.
[18]
B.
Buhendwa Aaron B. and P. Koumoutsakos,
“Data-driven shape
inference in three-dimensional steady-state supersonic flows: Optimizing
a discrete loss with JAX-fluids,” Phys. Rev. Fluids,
Jun. 2025, doi:
10.1103/9wj9-nmr8.
[19]
P.
Karnakov, L. Amoudruz, and P. Koumoutsakos,
“Optimal navigation in
microfluidics via the optimization of a discrete loss,” Phys.
Rev. Lett., vol. 134, p. 044001, Jan. 2025, doi:
10.1103/PhysRevLett.134.044001.