[1]
S.
Cherny
et al.,
“Simulating fully 3D
non-planar evolution of hydraulic fractures,” International
Journal of Fracture, vol. 201, no. 2, pp. 181–211, 2016, doi:
10.1007/s10704-016-0122-x.
[2]
P.
Karnakov, D. Kuranakov, V. Lapin, S. Cherny, and D. Esipov,
“Peculiarities of the hydraulic fracture propagation caused by
pumping of proppant-fluid slurry,” Thermophysics and
Aeromechanics, vol. 25, no. 4, pp. 587–603, 2018, doi:
10.1134/s086986431804011x.
[3]
S.
M. H. Hashemi
et al.,
“A versatile and membrane-less
electrochemical reactor for the electrolysis of water and brine,”
Energy & Environmental Science, vol. 12, no. 5, pp.
1592–1604, 2019, doi:
10.1039/c9ee00219g.
[4]
U.
Rasthofer, F. Wermelinger, P. Karnakov, J. Šukys, and P. Koumoutsakos,
“Computational study of the collapse of a cloud with 12 500 gas
bubbles in a liquid,” Physical Review Fluids, vol. 4,
no. 6, p. 063602, 2019, doi:
10.1103/PhysRevFluids.4.063602.
[5]
P.
Karnakov, F. Wermelinger, M. Chatzimanolakis, S. Litvinov, and P.
Koumoutsakos,
“A high performance computing framework for
multiphase, turbulent flows on structured grids,” 2019. doi:
10.1145/3324989.3325727.
[6]
P.
Karnakov, F. Wermelinger, S. Litvinov, and P. Koumoutsakos,
“Aphros: High performance software for multiphase flows with large
scale bubble and drop clusters,” 2020. doi:
10.1145/3394277.3401856.
[7]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“A hybrid particle
volume-of-fluid method for curvature estimation in multiphase
flows,” International Journal of Multiphase Flow, vol.
125, p. 103209, 2020, doi:
10.1016/j.ijmultiphaseflow.2020.103209.
[8]
Z.
Y. Wan, P. Karnakov, P. Koumoutsakos, and T. P. Sapsis,
“Bubbles
in turbulent flows: Data-driven, kinematic models with history
terms,” International Journal of Multiphase Flow, vol.
129, p. 103286, 2020, doi:
10.1016/j.ijmultiphaseflow.2020.103286.
[9]
P.
Karnakov
et al.,
“Data-driven inference of the
reproduction number for COVID-19 before and after
interventions for 51 European countries,” Swiss
medical weekly, vol. 150, p. w20313, 2020, doi:
10.4414/smw.2020.20313.
[10]
P.
Karnakov, S. Litvinov, J. M. Favre, and P. Koumoutsakos,
“Breaking
waves: To foam or not to foam?” Physical Review Fluids,
vol. 5, no. 11, p. 110503, 2020, doi:
10.1103/PhysRevFluids.5.110503.
[11]
M.
Chatzimanolakis
et al.,
“Optimal allocation of limited
test resources for the quantification of COVID-19
infections,” Swiss Medical Weekly, vol. 150, p. w20445,
2020, doi:
10.4414/smw.2020.20445.
[12]
S.
M. Martin, D. Wälchli, G. Arampatzis, A. E. Economides, P. Karnakov, and
P. Koumoutsakos,
“Korali: Efficient and scalable software
framework for Bayesian uncertainty quantification and
stochastic optimization,” Computer Methods in Applied
Mechanics and Engineering, vol. 389, p. 114264, 2022, doi:
10.1016/j.cma.2021.114264.
[13]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“Computing foaming
flows across scales: From breaking waves to microfluidics,”
Science Advances, vol. 8, no. 5, p. eabm0590, 2022, doi:
10.1126/sciadv.abm0590.
[14]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“Flow reconstruction
by multiresolution optimization of a discrete loss with automatic
differentiation,” The European Physical Journal E, vol.
46, no. 7, p. 59, 2023, doi:
10.1140/epje/s10189-023-00313-7.
[15]
P.
Karnakov, S. Litvinov, and P. Koumoutsakos,
“Solving inverse problems in physics by optimizing a
discrete loss: Fast and accurate learning without neural
networks,” PNAS Nexus, p. pgae005, Jan. 2024,
doi:
10.1093/pnasnexus/pgae005.